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1. 

Piecewise-linear systems exhibit non-linear behavior due to clearance or backlash between
components. It is well known that such systems subjected to two excitations with
non-multiple frequencies are commonly used in many engineering fields. Due to strong
non-linearity, many phenomena such as superharmonic, subharmonic, frequency-locked,
quasi-periodic and chaotic motions may exist or coexist.

Since the harmonic balance method is based on Fourier expansions of the state variables
and non-linear terms, a generalized form would suffer in its effectiveness for obtaining
steady state responses of a SDOF non-linear system which is subjected to external forces
with more than two frequencies.

Choi and Noah [1] applied the fixed point algorithm (FPA) and Kim [2] proposed a
modified FPA to perform the stability and bifurcation analyses of SDOF non-linear
systems with multi-input frequencies. Although the fixed point algorithm appeared to be
better than the harmonic balanced method, the patterns of bifurcation and Poincaré maps
related to the chaotic responses and quasi-periodic motions that they obtained were not
very accurate.

Oks et al. [3] investigated the suppression phenomena of resonant oscillations in these
strong non-linear SDOF systems subjected to parametric or forced excitations with two
incommensurate frequencies. The resonance and non-resonance regions were determined
by using the numerical integration method; however, the details of the periodic,
subharmonic, and chaotic motions were not observed.

In the present study, a strongly non-linear SDOF system modelled by a piecewise-linear
stiffness and subjected to two forced excitations is considered. This system is simulated by
the fourth order Runge–Kutta method for various initial conditions and the solutions are
analyzed by the J integral due to a proposition by Kang et al. [4]. Furthermore, the
bifurcation diagrams of the J integral are constructed to illustrate the jump phenomenon,
frequency-locked motion, quasi-periodic motion, and chaos with the assistance of Poincaré
maps and frequency spectra.
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Figure 1. Bifurcation of J integral versus amplitude l1; n1 =1·28, n2 =1·0, k=2·5, l2 =0·5, g=0·08.

2.      

Consider this system to be described by the following non-dimensional equation

ẍ+ gẋ+ x+ f(x)= l1 sin n1t+ l2 sin n2t, (1a)

where

f(x)=60k(x−sgn x)7 for =x=E 1
for =x=q 1,

(1b)

and the superscript dot denotes the differentiation with respect to t.
The steady state solutions of equations (1a, 1b) are obtained from numerical time

integration by using a fourth order Runge–Kutta method for various values of the system
parameters. An integral monitored on the computer may be utilized as

J=g
one forcing period

0

[ẋ(t)]2 dt, (2)

which has been proposed by Kang et al. [4].
The initial conditions of the non-dimensional displacement are from −2·5–2·5 and the

non-dimensional velocity from −5·0–5·0. N=600 is adopted for a time interval
Dt=2p/(n1N) in numerical integration. Before the performance of monitoring long terms
were not recorded for the avoidance of transient solutions. When values of the J integral
are computed for this system with various initial conditions, period-one motions (P1)
correspond to a single integral value, period-two motions (P2) correspond to two integral
values, . . . , and chaotic behaviors correspond to many J integrals. Therefore, multiple
solutions and response types are identified and classified by the J integral very efficiently.
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Figure 2. Poincaré map (left) and frequency spectrum (right) for points in Figure 1; (a) P2 motion at point
a (l1 =0·5); (b) P4 motion at point b (l1 =0·54); (c) Chaotic motion at point c (l1 =0·57); (d) Chaotic motion
at point d (l1 =0·59); (e) P8 motion at point e (l1 =0·61); (f) P4 motion at point f (l1 =0·63); (g) P2 motion
at point g (l1 =0·7); (h) P1 motion at point h (l1 =0·8).
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Additionally, Poincaré maps are constructed by sampling the steady state responses over
2000 points (x, ẋ) for one forcing period (T=2p/n1) and frequency spectra are determined
by using 200 forced periods.

3. - 

When a system governed by equations (1a, 1b) has a rational ratio between two
frequencies, the frequency-locked oscillation can be obtained.

For example, a system has parameters at n1 =1·28, n2 =1, k=2·5, l2 =0·5, g=0·08
and 0·5Q l1 Q 0·9 with various initial conditions. Figure 1 shows the bifurcation of the
J integral versus amplitude l1 to illustrate that a complete period-doubling cascade leads
to chaos by two inverted ways as the amplitude increases and decreases.

A period-n (Pn) motion has the nth subharmonic order which can be monitored by n
values of the J integral. Also, chaos may be distinguished from these frequency-locked
motions by the occurrence of an immense amount of the J integral. Thus, P1 motion is
observed at point h, P2 motions at points a and g, P4 motions at points b and f, P8 motion
at point e, and chaotic motions at points c and d, respectively.

Poincaré maps and frequency spectra corresponding to points denoted from a–h in
Figure 1 are shown in Figure 2. Because of the frequency ratio n2/n1 =25/32, the Poincaré
sections of the frequency-locked motions are composed of a multiple number of 32 points.

4. - 

For another example, this system has an irrational ratio between two frequencies, which
exhibits quasi-periodic motions, When the parameters of equations (1a, 1b) are n1 =z2,
n2 =1, l1 =0·7, l2 =0·5, and g=0·06 with various initial conditions, the bifurcation of
the J integral versus stiffness k is shown in Figure 3. A period-doubling cascade leading
to chaotic motions as the stiffness increases is observed, and a sudden transition from a

Figure 3. Bifurcation of J integral versus stiffness k; n1 =z2, n2 =1·0, l1 =0·7, l2 =0·5, g=0·06,
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Figure 4. Poincaré map (left) and frequency spectrum (right) for points in Figure 3; (a) P2 motion at k=2·9;
(b) P4 motion at k=3·0; (c) chaotic motion at k=3·1; (d) P2 motion at k=3·3.

P2 motion to chaos occurs at about k=3·191 as stiffness decreases. P2, P4 and chaotic
behaviors monitored by 2, 4, and huge numbers of J integral values can be observed in
Figure 3.

Frequency spectra and Poincaré maps are shown in Figure 4 for four values of stiffness
in Figure. 3. Because the frequency ratio is irrational, Poincaré sections of quasi-periodic
responses are constructed by continuous curves because the motion never exactly repeats
itself. These motions are composed of two periodic components. Thus, the frequency
spectra of the motions contain the nth harmonics =n2 − n1=/n as shown in Figure 4(a), (b),
and (d). As the chaotic behavior occurs, the frequency spectrum and a corresponding
Poincaré map become random-like structure, as shown in Figure 4(c).

5. 

Oscillations of a SDOF piecewise-linear system subjected to forced excitations with two
harmonic frequencies has been investigated. A J integral was applied to determine the
response types and to construct the bifurcation diagrams. Phenomena including jump
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behavior, subharmonics of various orders, period-doubling, and intermittency to chaos were
observed by the J bifurcation. Also, frequency-locked oscillations, quasi-periodic
oscillations, and chaotic motions have been distinguished.
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